# C4.5 pruning decision trees



# Quiz 1



# Quiz 1

Q: Is a tree with only pure leafs always the best classifier you can have?

A: No.



# Quiz 1

Q: Is a tree with only pure leafs always the best classifier you can have?

A: No.

This tree is the best classifier on the training set, but possibly not on new and unseen data. Because of overfitting, the tree may not generalize very well.





Universiteit Leiden

# Pruning

- Goal: Prevent overfitting to noise in the data
- Two strategies for "pruning" the decision tree:
  - Postpruning take a fully-grown decision tree and discard unreliable parts
  - Prepruning stop growing a branch when information becomes unreliable

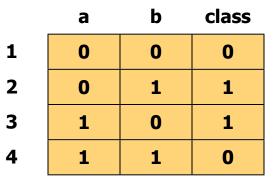


# Prepruning

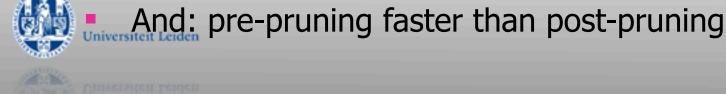
- Based on statistical significance test
  - Stop growing the tree when there is no statistically significant association between any attribute and the class at a particular node
- Most popular test: chi-squared test
- ID3 used chi-squared test in addition to information gain
  - Only statistically significant attributes were allowed to be selected by information gain procedure



# Early stopping



- Pre-pruning may stop the growth process prematurely: early stopping
- Classic example: XOR/Parity-problem
  - No individual attribute exhibits any significant association to the class
  - Structure is only visible in fully expanded tree
  - Pre-pruning won't expand the root node
- But: XOR-type problems rare in practice

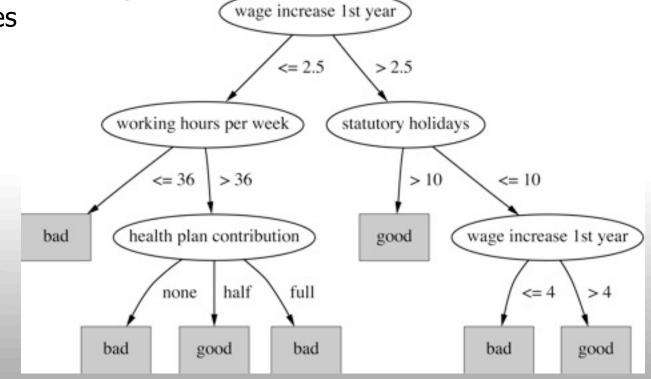


# Post-pruning

- First, build full tree
- Then, prune it
  - Fully-grown tree shows all attribute interactions
- Problem: some subtrees might be due to chance effects
- Two pruning operations:
  - **1.** Subtree replacement
  - 2. Subtree raising

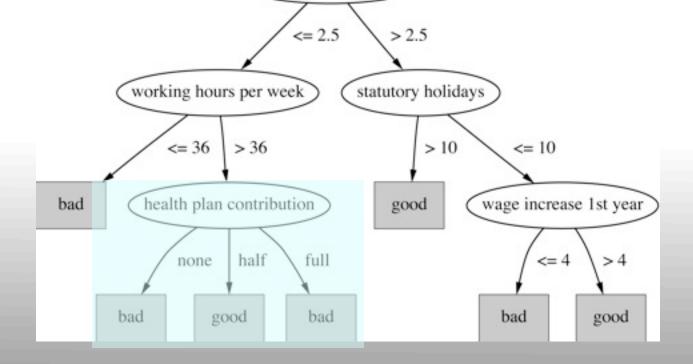


- Bottom-up
- Consider replacing a tree only after considering all its subtrees





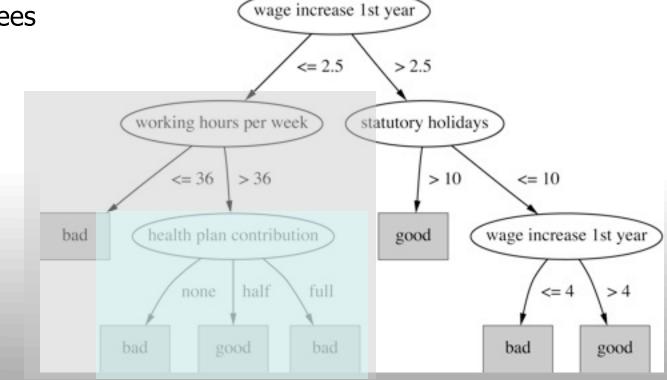
- Bottom-up
- Consider replacing a tree only after considering all its subtrees



wage increase 1st year

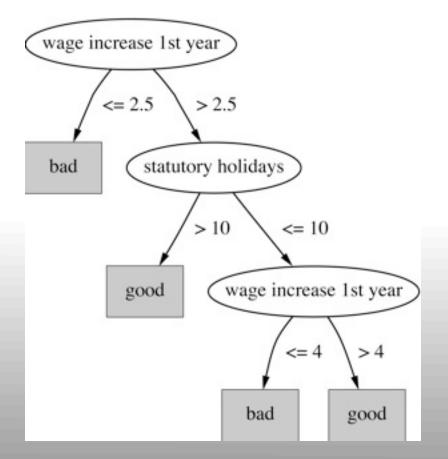


- Bottom-up
- Consider replacing a tree only after considering all its subtrees





- Bottom-up
- Consider replacing a tree only after considering all its subtrees

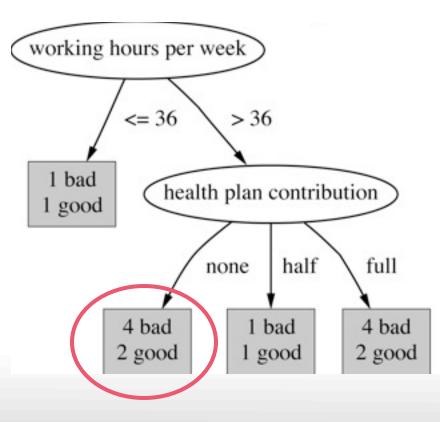




- Prune only if it reduces the estimated error
- Error on the training data is NOT a useful estimator
- Use hold-out set for pruning
  - ("reduced-error pruning")
- C4.5's method
  - Derive confidence interval from training data
  - Use a heuristic limit, derived from this, for pruning
  - Standard Bernoulli-process-based method

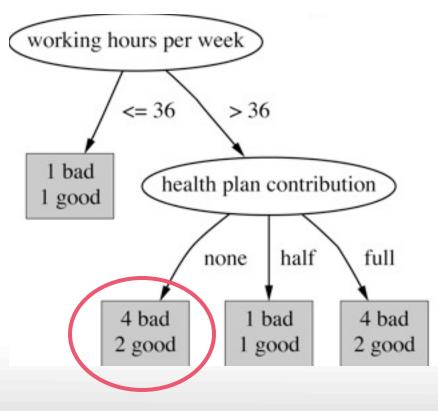


Shaky statistical assumptions (based on training data)



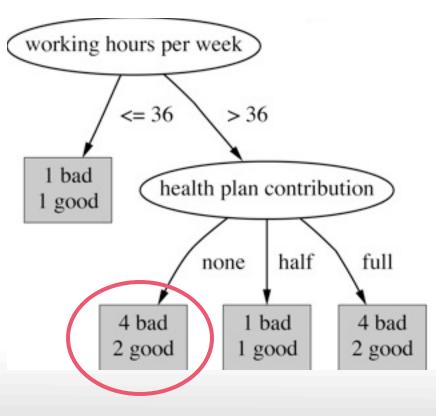


Q: what is the error rate on the training set?



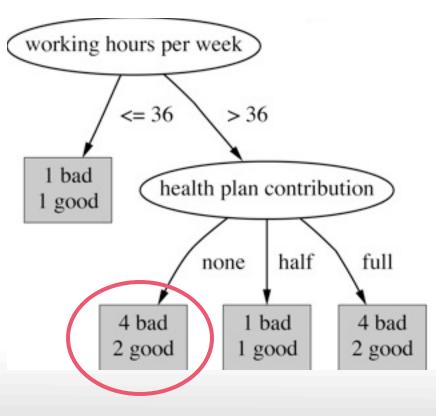


- Q: what is the error rate on the training set?
- A: 0.33 (2 out of 6)





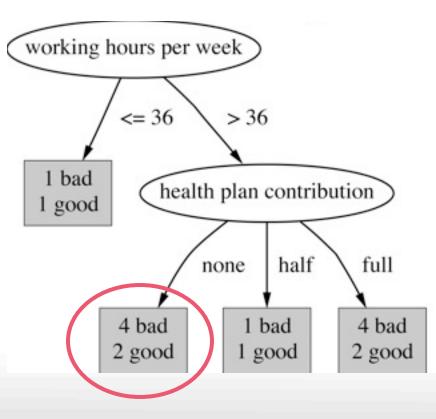
- Q: what is the error rate on the training set?
- A: 0.33 (2 out of 6)





- Q: what is the error rate on the training set?
- A: 0.33 (2 out of 6)

Q: will the error on the test set be bigger, smaller or equal?



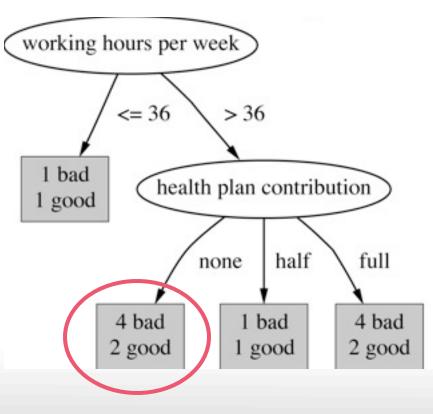


Q: what is the error rate on the training set?

A: 0.33 (2 out of 6)

Q: will the error on the test set be bigger, smaller or equal?

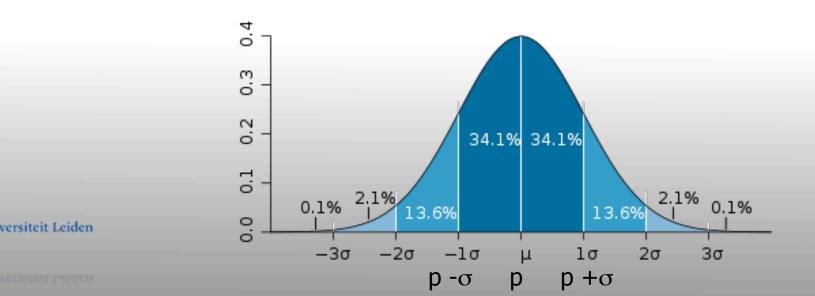
A: bigger





#### Estimating the error

- Assume making an error is Bernoulli trial with probability p
  - p is unknown (true error rate)
- We observe f, the success rate f = S/N
- For large enough N, f follows a Normal distribution
- Mean and variance for f : p, p (1-p)/N

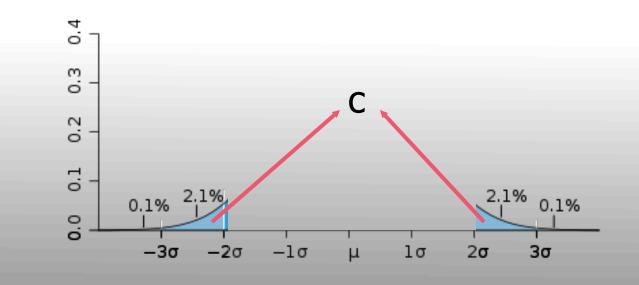


#### Estimating the error

 c% confidence interval [-z ≤ X ≤ z] for random variable with 0 mean is given by:

$$\Pr[-z \le X \le z] = c$$

• With a symmetric distribution:  $\Pr[-z \le X \le z] = 1 - 2 \times \Pr[X \ge z]$ 





**z-transforming f** Transformed value for f :  $\frac{f-p}{\sqrt{p(1-p)/N}}$ 

(i.e. subtract the mean and divide by the standard deviation)

• Resulting equation: 
$$\Pr\left[-z \le \frac{f-p}{\sqrt{p(1-p)/N}} \le z\right] = c$$

• Solving for p: 
$$p = \left(f + \frac{z^2}{2N} \pm z\sqrt{\frac{f}{N} - \frac{f^2}{N} + \frac{z^2}{4N^2}}\right) / \left(1 + \frac{z^2}{N}\right)$$

- Error estimate for subtree is weighted sum of error estimates for all its leaves
- Error estimate for a node (upper bound):

$$e = \left( f + \frac{z^2}{2N} + z_{N} \sqrt{\frac{f}{N} - \frac{f^2}{N} + \frac{z^2}{4N^2}} \frac{1}{j} \right) / \left( 1 + \frac{z^2}{N} \frac{1}{j} \right)$$

If c = 25% then z = 0.69 (from normal distribution)

| Pr[X ≥ z] | Z    |
|-----------|------|
| 1%        | 2.33 |
| 5%        | 1.65 |
| 10%       | 1.28 |
| 20%       | 0.84 |
| 25%       | 0.69 |
| 40%       | 0.25 |



$$e = \left(f + \frac{z^2}{2N} + z\sqrt{\frac{f}{N} - \frac{f^2}{N} + \frac{z^2}{4N^2}}\frac{1}{j}\right) \left(1 + \frac{z^2}{N}\right)$$



$$e = \left(f + \frac{z^2}{2N} + z\sqrt{\frac{f}{N} - \frac{f^2}{N} + \frac{z^2}{4N^2}}\frac{1}{j}\right) \left(1 + \frac{z^2}{N}\frac{1}{j}\right)$$

f is the observed error



$$e = \left(f + \frac{z^2}{2N} + z\sqrt{\frac{f}{N} - \frac{f^2}{N} + \frac{z^2}{4N^2}}\frac{1}{\dot{j}}\right) \left(1 + \frac{z^2}{N}\frac{1}{\dot{j}}\right)$$

- f is the observed error
- z = 0.69



$$e = \left(f + \frac{z^2}{2N} + z\sqrt{\frac{f}{N} - \frac{f^2}{N} + \frac{z^2}{4N^2}}\frac{1}{\dot{j}}\right) \left(1 + \frac{z^2}{N}\frac{1}{\dot{j}}\right)$$

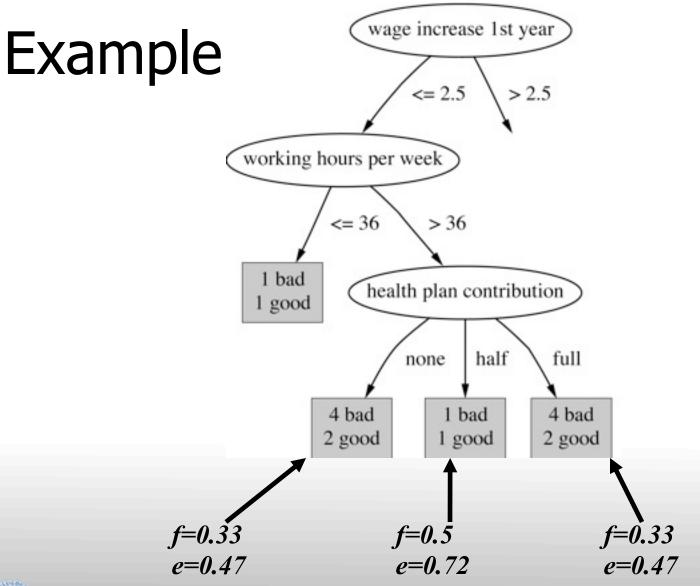
- f is the observed error
- z = 0.69
- e > f
- $e = (f + \varepsilon_1)/(1 + \varepsilon_2)$



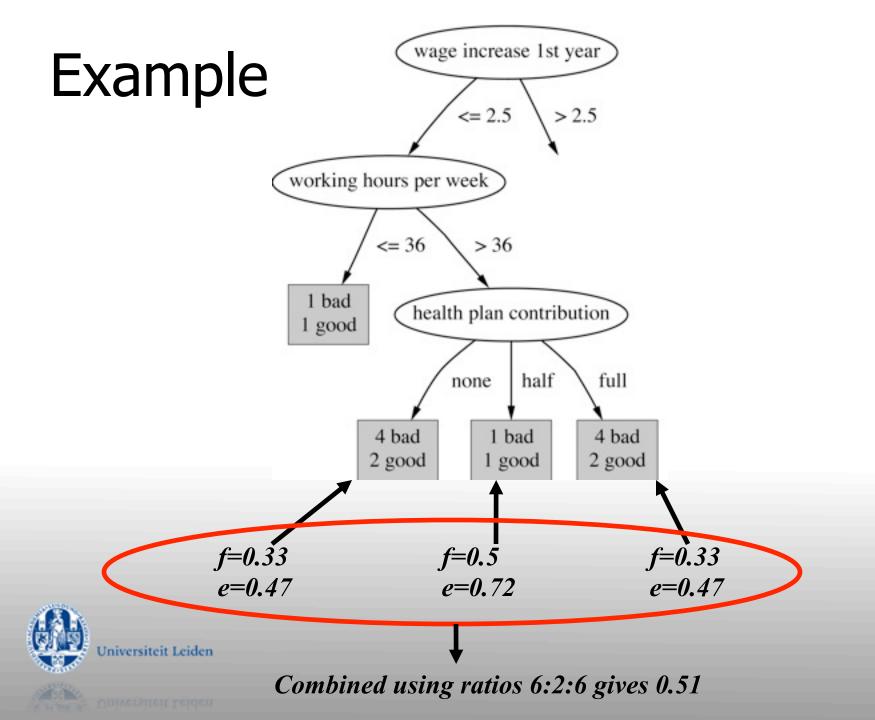
$$e = \left(f + \frac{z^2}{2N} + z\sqrt{\frac{f}{N} - \frac{f^2}{N} + \frac{z^2}{4N^2}}\frac{1}{\dot{j}}\right) \left(1 + \frac{z^2}{N}\frac{1}{\dot{j}}\right)$$

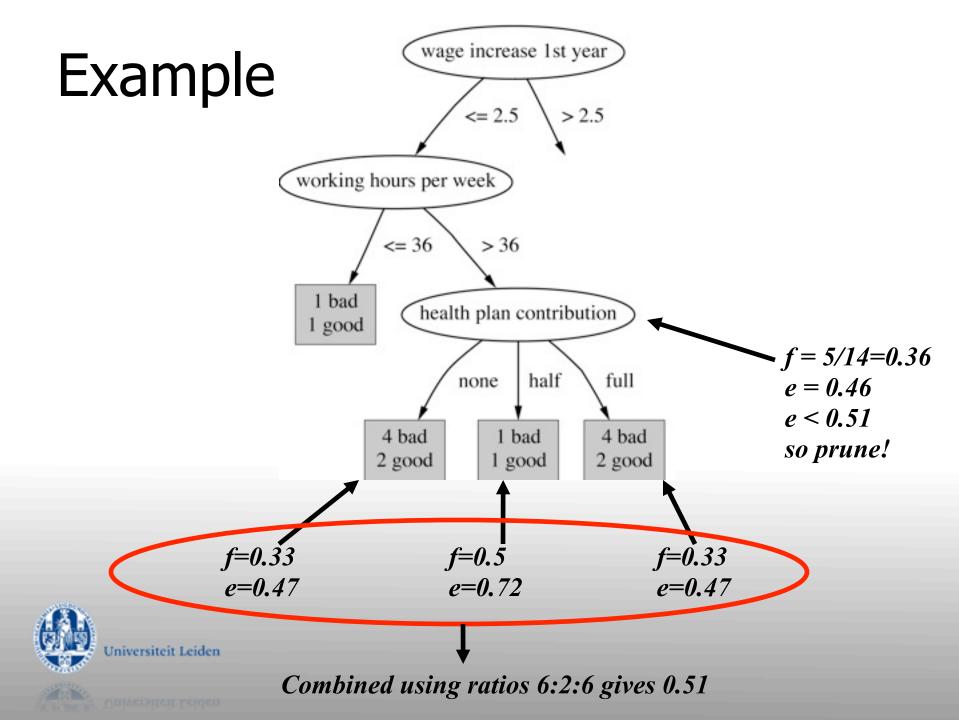
- f is the observed error
- z = 0.69
- e > f
- $e = (f + \varepsilon_1)/(1 + \varepsilon_2)$
- $N \rightarrow \infty, e = f$











# Summary

- Decision Trees
  - splits binary, multi-way
  - split criteria information gain, gain ratio, ...
  - pruning
- No method is always superior experiment!

